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Substitution of these expressions into Eq. 9.21 gives Mxr h(i) - (r  - a )  ~n 

a,, = - 
rd[R ln(:)-d] 

Maximizing a,, with respect to r, we find that o,~,,,~) occurs at 

(I-;.:) 
r = ae 

We evaluate Eq. (b) for the particular cross section of this example to obtain r = 9.987 m. At that loca- 
tion, the radial stress is, by Eq. (a), 

0.80 In(") - [(9.987 - 9.6) In 
202,500 9.6 - 

- 0.13 I 9.987(0.80)[ 10.0 In(%) - 0.801 

= 0.292 MPa 

An approximate formula for computing radial stress in curved beams of rectangular cross section is 
(AITC, 1994, p. 227) 

3M or, = - 
2Rbd 

Using this expression, we determine the radial stress to be or, = 0.292 MPa. The approximation of 
Eq. (d) is quite accurate in this case! In fact, for rectangular curved beams withR/d > 3, the error in 
Eq. (d) is less than 3%. However, as R/d becomes small, the error grows substantially and Eq. (d) is 
nonconservative. 

(b) Using the curved beam formula, Eq. 9.11, we obtain the maximum circumferential stress 
as (Tee(,,) = 15.0 m a .  Using the straight-beam flexure formula, Eq. 7.1, with I ,  = bd3/12 = 
0.005547 m4, we obtain CTBe = 202,500(0.40)/0.005547 = 14.6 MPa. Thus, the straight-beam flexure 
formula is within 3% of the curved beam formula. One would generally consider the flexure formula 
adequate for this case, in which R/d = 12.5. 

(c) The maximum circumferential stress is just within its limiting value; the beam is understressed 
just 5%. However, the maximum radial stress is 245% over its limit. It would be necessary to modify 
beam geometry or add mechanical reinforcement to make this design acceptable. 

9.4 CORRECTION OF CIRCUMFERENTIAL STRESSES 
IN CURVED BEAMS HAVING I, T, OR SIMILAR CROSS 
SECTIONS 

If the curved beam formula is used to calculate circumferential stresses in curved beams 
having thin flanges, the computed stresses are considerably in error and the error is non- 
conservative. The error arises because the radial forces developed in the curved beam 
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causes the tips of the flanges to deflect radially, thereby distorting the cross section of the 
curved beam. The resulting effect is to decrease the stiffness of the curved beam, to 
decrease the circumferential stresses in the tips of the flanges, and to increase the circum- 
ferential stresses in the flanges near the web. 

Consider a short length of a thin-flanged I-section curved beam included between 
faces BC and FH that form an infinitesimal angle d 8  as indicated in Figure 9 . 6 ~ .  If the 
curved beam is subjected to a positive moment M,, the circumferential stress distribution 
results in a tensile force T acting on the inner flange and a compressive force C acting on 
the outer flange, as shown. The components of these forces in the radial direction are T d 8  
and C d o .  If the cross section of the curved beam did not distort, these forces would be 
uniformly distributed along each flange, as indicated in Figure 9.6b. However, the two por- 
tions of the tension and compression flanges act as cantilever beams fixed at the web. The 
resulting bending because of cantilever beam action causes the flanges to distort, as indi- 
cated in Figure 9 . 6 ~ .  

The effect of the distortion of the cross section on the circumferential stresses in the 
curved beam can be determined by examining the portion of the curved beam ABCD in 
Figure 9.6d. Sections AC and BD are separated by angle 8 in the unloaded beam. When 
the curved beam is subjected to a positive moment, the center of curvature moves from 0 
to 0*, section AC moves to A*C*, section BD moves to B*D*, and the included angle 
becomes 8*. If the cross section does not distort, the inner tension flange AB elongates to 
length A*B*. Since the tips of the inner flange move radially inward relative to the undis- 
torted position (Figure 9.6c), the circumferential elongation of the tips of the inner flange 
is less than that indicated in Figure 9.6d. Therefore, CTee in the tips of the innerflange is 
less than that calculated using the curved beam formula. To satisfy equilibrium, it is nec- 
essary that CTee for the portion of the flange near the web be greater than that calculated 
using the curved beam formula. Now consider the outer compression flange. As indicated 
in Figure 9.6d, the outer flange shortens from CD to C*D* if the cross section does not 
distort. Because of the distortion (Figure 9.6c), the tips of the compressive flange move 
radially outward, requiring less compressive contraction. Therefore, the magnitude of 
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FIGURE 9.6 Distortion of cross section of an I-section curved beam. 
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in the tips of the compression outerflange is less than that calculated by the curved beam 
formula, and the magnitude of oee in the portion of the compression flange near the web 
is larger than that calculated by the curved beam formula. 

The resulting circumferential stress distribution is indicated in Figure 9.7. Since in 
developing the curved beam formula we assume that the circumferential stress is indepen- 
dent of x (Figure 9.2), corrections are required if the formula is to be used in the design of 
curved beams having I, T, and similar cross sections. There are two approaches that can be 
employed in the design of these curved beams. One approach is to prevent the radial dis- 
tortion of the cross section by welding radial stiffeners to the curved beams. If distortion 
of the cross section is prevented, the use of the curved beam formula is appropriate. A sec- 
ond approach, suggested by H. Bleich (1933), is discussed next. 

9.4.1 Bleich’s Correction Factors 

Bleich reasoned that the actual maximum circumferential stresses in the tension and com- 
pression flanges for the I-section curved beam (Figure 9.8a) can be calculated by the 
curved beam formula applied to an I-section curved beam with reducedflange widths, as 
indicated in Figure 9.8b. By Bleich’s method, if the same bending moment is applied to 
the two cross sections in Figure 9.8, the computed maximum circumferential tension and 

FIGURE 9.7 Stresses in I-section of curved beam. 

Center of curvature 

(a)  

FIGURE 9.8 (a)  Actual and (b)  modified I-section for a curved beam. 
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compression stresses for the cross section shown in Figure 9.8b, with no distortion, are 
equal to the actual maximum circumferential tension and compression stresses for the 
cross section in Figure 9.8a, with distortion. 

The approximate solution proposed by Bleich gives the results presented in tabular 
form in Table 9.3. To use the table, the ratio b;l7y must be calculated, where 

bp = projecting width of flange (see Figure 9 . 8 ~ )  

7 = radius of curvature to the center of flange 
t f  = thickness of flange 

The reduced width bb of the projecting part of each flange (Figure 9.8b) is given by the 
relation 

b' = abp (9.22) 

where a is obtained from Table 9.3 for the computed value of the ratio bZl7-y . The 
reduced width of each flange (Figure 9.8b) is given by 

P 

b' = 2bL + t ,  (9.23) 

where tw is the thickness of the web. When the curved beam formula (Eq. 9.1 1 )  is applied 
to an undistorted cross section corrected by Eq. 9.23, it predicts the maxmum circumferen- 
tial stress in the actual (distorted) cross section. This maximum stress occurs at the center 
of the inner flange. It should be noted that the state of stress at this point in the curved 
beam is not uniaxial. Because of the bending of the flanges (Figure 9.6c), a transverse 
component of stress 0, (Figure 9.2) is developed; the sign of 0, is opposite to that of 
bge(,,). Bleich obtained an approximate solution for 0, for the inner flange. It is given 
by the relation 

(9.24) 

where p is obtained from Table 9.3 for the computed value of the ratio b;/"f , and where 
0 0 6  is the magnitude of the circumferential stress at midthickness of the inner flange; the 
value of Zee is calculated based on the corrected cross section. 

Although Bleich's analysis was developed for curved beams with relatively thin 
flanges, the results agree closely with a similar solution obtained by C. G. Anderson 
(1950) for I-beams and box beams, in which the analysis was not restricted to thin-flanged 
sections. Similar analyses of tubular curved beams with circular and rectangular cross 

- 

TABLE 9.3 Table for Calculating the Effective Width and Lateral Bending Stress 
of Curved I- or T-Beams 

b i / 7 t f  0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .o 
a 0.977 0.950 0.917 0.878 0.838 0.800 0.762 0.726 0.693 
p 0.580 0.836 1.056 1.238 1.382 1.495 1.577 1.636 1.677 

~~ 

bEl?tf 1.1 1.2 1.3 1.4 1.5 2.0 3.0 4.0 5.0 

a 0.663 0.636 0.611 0.589 0.569 0.495 0.414 0.367 0.334 
p 1.703 1.721 1.728 1.732 1.732 1.707 1.671 1.680 1.700 
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EXAMPLE 9.8 
Bleich Correctior; 

Factors foi 
T-Section 

Solution 

sections have been made by S. Timoshenko (1923). An experimental investigation by 
D. C. Broughton, M. E. Clark, and H. T. Corten (1950) showed that another type of correc- 
tion is needed if the curved beam has extremely thick flanges and thin webs. For such 
beams each flange tends to rotate about a neutral axis of its own in addition to the rotation 
about the neutral axis of the curved beam cross section as a whole. Curved beams for 
which the circumferential stresses are appreciably increased by this action probably fail by 
excessive radial stresses. 

Note: 
section. 

The radial stress can be calculated using either the original or the modified cross 

A T-section curved beam has the dimensions indicated in Figure E9.8a and is subjected to pure bend- 
ing. The curved beam is made of a steel having a yield stress Y = 280 MPa. 

(a) Determine the magnitude of the moment that indicates yielding in the curved beam if Bleich’s 
correction factors are not used. 

(b) Use Bleich’s correction factors to obtain a modified cross section. Determine the magnitude of the 
moment that initiates yielding for the modified cross section and compare with the result of part (a). 

20 mm 
--IF 

20 mm 
- + I +  

60 mm 60’mm 

Center of curvature Center of curvature 

FIGURE E9.8 (a)  Actual section. (b)  Modified section. 

(a) The magnitudes ofA, A,, and R for the actual cross section are given by Eqs. 9.12,9.13, and 9.14, 
respectively, as follows: A = 4000 mm2, A, = 44.99 mm, and R = 100.0 mm. By comparison of the 
stresses at the locations r = 180 mm and r = 60 mm, we find that the maximum magnitude of (Tee 
occurs at the outer radius (r = 180 mm). (See Eq. 9.1 1.) Thus, 

M,[4000 - 180(44.99)] 
oBB(max) - - 14000( 180)[ 100.0(44.9) - 40001/ 

= 1-1.141 x 10-5MA 

where M, has the units of N mm. Since the state of stress is assumed to be uniaxial, the magnitude 
of M, to initiate yielding is obtained by setting oeB = -Y. Thus, 

M, = 
280 

1.141 x lo-’ 
= 24,540,000 N mm = 24.54 kN m 

(b) The dimensions of the modified cross section are computed by Bleich’s method; hence b;/7tr 
must be calculated. It is 
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Linear interpolation in Table 9.3 yields a = 0.651 and p = 1.71 1. Hence, by Eqs. 9.22 and 9.23, the 
modified flange width is bi = cxbp = 0.651(40) = 26.04 mm and b’ = 2bi + tw = 2(26.04) + 20 = 72.1 mm 
(Figure E9.8b). For this cross section, by means of Eqs. 9.12,9.13, and 9.14, we find 

A = 72.1(20)+20(100) = 3442mm’ 

R =  72.1(20)(70) + 20( loo)( 130) - - 104.9 mm 
3442 

80 180 A, = 72.1 In- + 20 In- = 36.96 mm 
60 80 

Now by means of Eq. 9.1 1, we find that the maximum magnitude of (Tee occurs at the inner radius of 
the modified cross section. Thus, with r = 60 mm, Eq. 9.1 1 yields I 

M,[ 3442 - 60( 36.96)] 
= 1.363 x lO%, 

= 3442(60)[ lO4.9(36.96) - 34421 O 

The magnitude of M, that causes yielding can be calculated by means of either the maximum shear 
stress criterion of failure or the octahedral shear stress criterion of failure. If the maximum 
shear stress criterion is used, the minimum principal stress must also be computed. The minimum 
principal stress is o~,. Hence, by Eqs. 9.1 1 and 9.24, we find 

- M,[3442 - 70(36.96)] 
= 8.15 x 10-6M, 

O ” = 3442( 70) [ 104.9( 36.96) - 34421 

ox, = -paee = -1.711(8.15 x 10-6M,) = -1 .394~ 10-’Mx 

A comparison of the moment M, determined in parts (a) and (b) indicates that the computed M, 
required to initiate yielding is reduced by 58.8% because of the distortion of the cross section. Since 
the yielding is highly localized, its effect is not of concern unless the curved beam is subjected to 
fatigue loading. If the second principal stress O, is neglected, the moment M, is reduced by 16.5% 
because of the distortion of the cross section. The distortion is reduced if the flange thickness is 
increased. 

9.5 DEFLECTIONS OF CURVED BEAMS 

A convenient method for determining the deflections of a linearly elastic curved beam is 
by the use of Castigliano’s theorem (Chapter 5). For example, the deflection and rotation 
of the free end of the curved beam in Figure 9.242 are given by the relations 

(9.25) 
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(9.26) 

where S,, is the component of the deflection of the free end of the curved beam in the 
direction of load P I ,  Cp is the angle of rotation of the free end of the curved beam in the 
direction of Mo, and U is the total elastic strain energy in the curved beam. The total strain 
energy U (see Eq. 5.6) is equal to the integral of the strain-energy density Uo over the vol- 
ume of the curved beam (see Eqs. 3.33 and 5.7). 

Consider the strain-energy density Uo for a curved beam (Figure 9.2). Because of 
the symmetry of loading relative to the (y, z )  plane, oxr = ox, = 0, and since the effect of 
the transverse normal stress 6, (Figure 9.2b) is ordinarily neglected, the formula for the 
strain-energy density U, reduces to the form 

1 2  1 2  v 1 2  uo = -6''+-6rr--6 6 +- 2E 2E E rr $6 2GOrt1 

where the radial normal stress err, the circumferential normal stress b e e ,  and the shear 
stress Ore are, relative to the (x,  y, z) axes of Figure 9.2b, or, = oYy, b g e  = o,,, and Or, = 
oyz. In addition, the effect of or, is often small for curved beams of practical dimensions. 
Hence, the effect of 6, is often discarded from the expression for U,. Then, 

1 2  1 2  
2E " 2Gore 

u, = -6 +- 

The stress components b e e  and Ore, respectively, contribute to the strain energies U ,  and 
Us because of the normal traction N and shear V (Figure 9.2b). In addition, b e e  contrib- 
utes to the bending strain energy UM, as well as to the strain energy Urn because of a cou- 
pling effect between the moment M and traction N, as we shall see in the derivation below. 

Ordinarily, it is sufficiently accurate to approximate the strain energies Us and U, 
that are due to shear V and traction N ,  respectively, by the formulas for straight beams (see 
Section 5.3). However, the strain energy UM resulting from bending must be modified. To 
compute this strain energy, consider the curved beam shown in Figure 9.2b. Since the 
strain energy increment dU for a linearly elastic material undergoing small displacement is 
independent of the order in which loads are applied, let the shear load V and normal load N 
be applied first. Next, let the moment be increased from zero to M,. The strain energy 
increment resulting from bending is 

(9.27) d U ,  = -M,A(d6)  1 = -M,wd6 1 
2 2 

where A(d6), the change in d6,  and w = A(d6)/d6 are due to M, alone. Hence, w is deter- 
mined from Eq. 9.10 with N = 0. Consequently, Eqs. 9.27 and Eq. 9.10 yield (with N = 0) 

d U ,  = AmMz 
2A(RAm - A)E 

(9.28) 

During the application of M,, additional work is done by N because the centroidal 
(middle) surface (Figure 9.2b) is stretched an amount dZoee. Let the corresponding strain 
energy increment caused by the stretching of the middle surface be denoted by durn. This 
strain energy increment dUm is equal to the work done by N as it moves through the dis- 
tance dFee. Thus, 
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dUm = NdFge = N E , , R d 8  (9.29) 

where d Fee and Fee refer to the elongation and strain of the centroidal axis, respectively. 
The strain Fee is given by Eq. 9.3 with r = R. Thus, Eq. 9.3 (with r = R) and Eqs. 9.29,9.9, 
and 9.10 (with N = 0) yield the strain energy increment dUm resulting from coupling of 
the moment M ,  and traction N: 

durn  = " [  - -- M x  R 
E RA,-A A(RA,-A) 

I d 8  = - = d o  MXN (9.30) 

By Eqs. 5.8, 5.14, 9.28, and 9.30, the total strain energy U for the curved beam is 
obtained in the form 

u = u,+u,+u,+u,, 
or 

2 2 M N  
kV Rde+j!!&@+j d 8  -I L d 8  (9.31) 

2AE 2A(RA, - A)E EA 

Equation 9.3 1 is an approximation, since it is based on the assumptions that plane sections remain 
plane and that the effect of the radial stress 0, on U is negligible. It might be expected that the 
radial stress increases the strain energy. Hence, Eq. 9.3 1 yields a low estimate of the actual strain 
energy. However, if M, and N have the same sign, the coupling Urn, the last term in Eq. 9.3 1, is 
negative. Ordinarily, Urn is small and, in many cases, it is negative. Hence, we recommend that 
Urn, the coupling strain energy, be discarded from Eq. 9.31 when it is negative. The discarding 
of Urn from Eq. 9.31 raises the estimate of the actual strain energy when Urn is negative and 
compensates to some degree for the lower estimate caused by discarding 0,. 

The deflection Selast of rectangular cross section curved beams has been given by 
Timoshenko and Goodier (1970) for the two types of loading shown in Figure 9.4. The ratio 
of the deflection 6, given by Castigliano's theorem and the deflection Selast is presented in 
Table 9.4 for several values of R/h. The shear coefficient k (see Eqs. 5.14 and 5.15) was taken 
to be 1.5 for the rectangular section, and Poisson's ratio v was assumed to be 0.30. 

TABLE 9.4 Ratios of Deflections in Rectangular Section Curved Beams Computed 
by Elasticity Theory and by Approximate Strain Energy Solution 

Neglecting UMN Including UMN 

Pure bending Shear loading Pure bending Shear loading 

(21 
0.65 0.923 1.563 0.697 1.215 
0.75 0.974 1.381 0.807 1.123 
1 .o 1.004 1.197 0.914 1.048 
1.5 1.006 1.085 0.968 1.016 
2.0 1.004 1.048 0.983 1.008 
3.0 1.002 1.021 0.993 1.003 
5.0 1 .ooo 1.007 0.997 1.001 
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EXAMPLE 9.9 
Deformations in 
a Curved Beam 

Subjected to 
Pure Bending 

Solution 

Note: The deflection of curved beams is much less influenced by the curvature of the curved 
beam than is the circumferential stress c7&% If R/h is greater than 2.0, the strain energy resulting 
from bending can be approximated by that for a straight beam. Thus, for R/h > 2.0, for computing 
deflections the third and fourth terms on the right-hand side of EQ. 9.31 may be replaced by 

(9.32) 

In particular, we note that the deflection of a rectangular cross section curved beam with 
R / h  = 2.0 is 7.7% greater when the curved beam is assumed to be straight than when it is 
assumed to be curved. 

9.5.1 Cross Sections in the Form of an I, T, etc. 

As discussed in Section 9.4, the cross sections of curved beams in the form of an I, T, etc. 
undergo distortion when loaded. One effect of the distortion is to decrease the stiffness of the 
curved beam. As a result, deflections calculated on the basis of the undistorted cross section 
are less than the actual deflections. Therefore, the deflection calculations should be based on 
modified cross sections determined by Bleich's correction factors (Table 9.3). The strain 
energy terms U ,  and U ,  for the curved beams should also be calculated using the modified 
cross section. We recommend that the strain energy Us be calculated with k = 1.0, and with 
the cross-sectional area A replaced by the area of the web A, = th, where t is the thickness of 
the web and h is the curved beam depth. Also, as a working rule, we recommend that the 
coupling energy Urn be neglected if it is negative and that it be doubled if it is positive. 

The curved beam in Figure E9.9 is made of an aluminum alloy (E = 72.0 GPa), has a rectangular 
cross section with a thickness of 60 mm, and is subjected to a pure bending momentM = 24.0 kN m. 

(a) Determine the angle change between the two horizontal faces where M is applied. 

(b) Determine the relative displacement of the centroids of the horizontal faces of the curved beam. 

100 mm 150 m m  

FIGURE E9.9 

Required values for A, A,, and R for the curved beam are calculated using equations in row (a) of 
Table 9.2: 

2 A = 60( 150) = 9000 mm 

A, = 60 In= = 54.98 mm 
100 

R = 100+75 = 175 mm 
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EXAMPLE 9.10 
Deflections 

in a Press 

Solution 

(a) The angle change between the two faces where M is applied is given by Eq. 9.26. As indicated in 
Figure E9.9u, the magnitude of M, at any angle 0 is M, = M .  Thus, by Eq. 9.26, we obtain 

dU 

0 

- - 54.98( 24,OOO,OOO)w 

= 0.01029 rad 

9000[175(54.98) -9OOO](72,OOO) 

(b) To determine the deflection of the curved beam, a load P must be applied as indicated in Figure 
E9.9b. In this case, M, = M + PR sin0 and dU/dP = R sine. Then the deflection is given by Eq. 9.25, 
in which the integral is evaluated with P = 0. Thus, the relative displacement is given by the relation 

A(RAm - A ) E  
0 

or 

A press (Figure E9.10~) has the cross section shown in Figure E9.10b. It is subjected to a load P = 
11.2 kN. The press is made of steel with E = 200 GPa and v = 0.30. Determine the separation of the 
jaws of the press caused by the load. 

10 mm 10 mm 

:j 
FIGURE E9.10 (a) Curved beam. (b)  Actual section. (c) Modified section. 

The press is made up of two straight members and a curved member. We compute the strain energies 
resulting from bending and shear in the straight beams, without modification of the cross sections. 
The moment of inertia of the cross section is I ,  = 181.7 x lo3 mm4. We choose the origin of the coor- 
dinate axes at load P, with z measured from P toward the curved beam. Then the applied shear V and 
moment M, at a section in the straight beam are 

V = P  
M, = Pz 
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In the curved beam portion of the press, we employ Bleich’s correction factor to obtain a modified 
cross section. With the dimensions in Figure E9. lob, we find I 

A linear interpolation in Table 9.3 yields the result a = 0.822. The modified cross section is shown in I Figure E9.10~. Equations 9.12-9.14 give 

A = 34.7( 10) + lO(40) = 747 mm’ 

R =  34.7(10)(35)+ 10(40)(60) = 48.4 mm 
747 

80 40 A, = 10 In- + 34.7 In- = 16.9 mm 
40 30 

With 8 defined as indicated in Figure E9. lOu, the applied shear V, normal load N, and moment M, for 
the curved beam are 

v = p c o s e  
N = Psi118 

M ,  = P(100+Rsin8) 

Summing the strain energy terms for the two straight beams and the curved beam and taking the 
derivative with respect to P (Eq. 9.25), we compute the increase in distance 6, between the load 
points as 

P (  100 + R sin8)2A, 
100 100 

6, = 2 1  -dz P + 2 j - -d r+ j -  P Z 2  P cos2 8 Rd8+jP*Rd@+j d8 
0 AWG 0 El, AWG 0 0 A(RA, - A)E 

I The shear modulus is G = E/[2(1 + v ) ]  = 76,900 MPa and A, = th = (10)(50) = 500 mm2. Hence, 

2(11,200)(100) + 2(11,200)(100)3 
76,900(500) 3(200,000)( 181,700) 

11,200(48.4)w + 11,200(48.4)~ 
500( 76,9OO)( 2) 747( 200,000) (2) 

+ 

+ 16.9( 11,200) [(100)2n+ n(48.4)2 2 +2(100)(48.4)(2)] 
747[48.4( 16.9) - 747](200,000) 

or 

6, = 0.058 + 0.205 + 0.022 + 0.006 + 0.972 = 1.263 mm 

9.6 STATICALLY INDETERMINATE CURVED BEAMS: 
CLOSED RING SUBJECTED TO A CONCENTRATED LOAD 

Many curved members, such as closed rings and chain links, are statically indeterminate 
(see Section 5.5). For such members, equations of equilibrium are not sufficient to deter- 
mine all the internal resultants (V, N ,  M,) at a section of the member. The additional rela- 
tions needed to solve for the loads are obtained using Castigliano’s theorem with 
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appropriate boundary conditions. Since closed rings are commonly used in engineering, 
we present the computational procedure for a closed ring. 

Consider a closed ring subjected to a central load P (Figure 9 .9~) .  From the condi- 
tion of symmetry, the deformations of each quadrant of the ring are identical. Hence, we 
need consider only one quadrant. The quadrant (Figure 9.9b) may be considered fixed at 
section FH with a load PI2 and moment Mo at section BC. Because of the symmetry of the 
ring, as the ring deforms, section BC remains perpendicular to section FH. Therefore, by 
Castigliano’s theorem, we have for the rotation of face BC 

The applied loads V,  N, and M, at a section forming angle 8 with the face BC are 

P V = -sin8 
2 
P N = -cos6 
2 

M, = M o - g ( l - c o s 8 )  
2 

(9.33) 

(9.34) 

Substituting Eqs. 9.31 and 9.34 into Eq. 9.33, we find 

n/2 [ M ~  - e)( 1 - cos e)]~,  nn (+ e 
d o - f  - d€J (9.35) 

AE 
o =  1 

A ( R A ,  - A ) E  
0 0 

where Urn has been included. The solution of Eq. 9.35 is 

H 

C 

(a) 

FIGURE 9.9 Closed ring. 

(9.36) 
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If Rjh is greater than 2.0, we take the bending energy UM as given by Eq. 9.32 and ignore 
the coupling energy Urn. Then, Mo is given by the relation 

M, = PR ?.(I-:) (9.37) 

With Mo known, the loads at every section of the closed ring (Eqs. 9.34) are known. The 
stresses and deformations of the closed ring may be calculated by the methods of Sections 
9.2-9.5. 

9.7 FULLY PLASTIC LOADS FOR CURVED BEAMS 

In this section we consider curved beams made of elastic-perfectly plastic materials with 
yield stress Y (Figure 1 3 ) .  For a curved beam made of elastic-perfectly plastic material, 
the fully plastic moment Mp under pure bending is the same as that for a straight beam 
with identical cross section and material. However, because of the nonlinear distribution 
of the circumferential stress b g g  in a curved beam, the ratio of the fully plastic moment 
Mp under pure bending to maximum elastic moment M y  is much greater for a curved beam 
than for a straight beam with the same cross section. 

Most curved beams are subjected to complex loading other than pure bending. The 
stress distribution for a curved beam at the fully plastic load Pp for a typical loading con- 
dition is indicated in Figure 9.10. Since the tension stresses must balance the compression 
stresses and load Pp, the part A, of the cross-sectional area A that has yielded in tension is 
larger than the part A,  of area A that has yielded in compression. In addition to the 
unknowns AT and A,, a third unknown is Pp, the load at the fully plastic condition. This 
follows because R (the distance from the center of curvature 0 to the centroid 0) can be 
calculated and D is generally specified rather than Pp. The three equations necessary to 
determine the three unknowns AT, A,, and Pp are obtained from the equations of equilib- 
rium and the fact that the sum of A, and A, must equal the cross-sectional area A, that is, 

FIGURE 9.10 Stress distribution for a fully plastic load on a curved beam. 
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A = A T + A c  (9.38) 

The equilibrium equations are (Figure 9.10) 

(9.39) 

(9.40) 

In Eq. 9.40, Y T  and 7, locate the centroids of AT and A,, respectively, as measured from 
the centroid 0 of the cross-sectional area of the curved beam (Figure 9.10). Let M be the 
moment, about the centroidal axis x, resulting from the stress distribution on section BC 
(Figure 9.10). Then, 

M = P p D  = A,Y LT + A,Y 7, (9.41) 

Trial and error can be used to solve Eqs. 9.38-9.40 for the magnitudes of AT, 4, and Pp, 
since YT and 7, are not known until A, andAc are known (McWhorter et al., 1971). 

The moment M (Eq. 9.41) is generally less than the fully plastic moment M p  for pure 
bending. It is desirable to know the conditions under which M resulting from load P p  can be 
assumed equal to Mp, since for pure bending AT is equal to A,, and the calculations are 
greatly simplified. For some common sections, M = Mp, when D > h. For example, for D = 
h, we note that M = 0.94Mp for curved beams with rectangular sections and M = 0.96Mp for 
curved beams with circular sections. However, for curved beams with T-sections, M may be 
greater than M p .  Other exceptions are curved beams with I-sections and box-sections, for 
which D should be greater than 2h for M to be approximately equal to M p  . 

9.7.1 Fully Plastic Versus Maximum Elastic Loads 
for Curved Beams 

A linearly elastic analysis of a load-carrying member is required to predict the load- 
deflection relation for linearly elastic behavior of the member up to the load P y  that ini- 
tiates yielding in the member. The fully plastic load is also of interest since it is often con- 
sidered to be the limiting load that can be applied to the member before the deformations 
become excessively large. 

The fully plastic load Pp for a curved beam is often more than twice the maximum 
elastic load P ,  Fracture loads for curved beams that are made of ductile metals and sub- 
jected to static loading may be four to six times P ,  Dimensionless load-deflection experi- 
mental data for a uniform rectangular section hook made of a structural steel are shown in 
Figure 9.11. The deflection is defined as the change in distance ST between points S and Ton 
the hook. The hook does not fracture even for loads such that PIPy > 5 .  A computer program 
written by J. C. McWhorter, H. R. Wetenkamp, and 0. M. Sidebottom (1971) gave the pre- 
dicted curve in Figure 9.11. The experimental data agree well with predicted results. 

As noted in Figure 9.1 1,  the ratio of P p  to P y  is 2.44. Furthermore, the load- 
deflection curve does not level off at the fully plastic load but continues to rise. This 
behavior may be attributed to strain hardening. Because of the steep stress gradient in the 
hook, the strains in the most strained fibers become so large that the material begins to 
strain harden before yielding can penetrate to sufficient depth at section BC in the hook to 
develop the fully plastic load. 
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PROBLEMS 

Section 9.2 

9.1. A curved beam has the T-shaped cross section shown in 
Figure P9.1. The radius of curvature to the inner face of the 
flange is 2o mm. The maximum circumferential 
stress has a magnitude of 250 m a .  Determine the magnitude 
of the bending moment that may be applied to the beam. 

9.2. A curved steel bar of circular cross section is used as a 
crane hook (Figure P9.2). The radius of curvature to the inner 

a. Determine the maximum tensile and compressive stresses at 
section A-A in terms of load P, radius r, and diameter d. 

b. The maximum allowable design tensile stress at sectionA-A 
is 375 M P ~ .  ~~~~e~ the maximum allowable load p, for a 
radius r = 75 mm and a diameter d = 50 mm. 
9.3. In a redesign of the aircraft beam of Example 9.2, the beam 
is replaced by a beam with the cross section shown in Figure 
P9.3. edge of the bar is r and the bar has diameter d. 
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mm- 
9.7. The curved beam in Figure p9.7 has a circular cross section 
50 mm in diameter. The inside diameter of the curved beam is 
40 mm. Determine the stress at B for P = 20 kN. 

FIGURE P9.1 

FIGURE P9.7 

9.8. Let the crane hook in Figure E9.3 have a trapezoidal cross 
section as shown in row (c) of Table 9.2 with (see Figure P9.8) 
a = 45 mm, c = 80 mm, b, = 25 mm, and b, = 10 mm. Deter- 
mine the maximum load to be carried by the hook if the work- 
ing stress limit is 150 MPa. 

FIGURE P9.2 

10 mm 
25 mm Is\, 1470 mm -++-++- 50 mm 

I 
i 
I 

50 mm 

25 mm 

I 
FIGURE P9.3 

a. Rework Example 9.2 with the new cross section. 

b. Compare the results to those of Example 9.2. 

c. Comment on the worthiness of the redesign. 

9.4. Rework Example 9.4 assuming that the pin exerts a uni- 
form pressure p on the hook at radius ii for 0 5 8 I n. Compare 
the results to those of Example 9.4. 

9.5. The frame shown in Figure E9.1 has a rectangular cross 
section with a thickness of 10 mm and depth of 40 mm. The 
load P is located 120 mm from the centroid of section BC. The 
frame is made of steel having a yield stress of Y = 430 MPa. 
The frame has been designed using a factor of safety of SF = 
1.75 against initiation of yielding. Determine the maximum 
allowable magnitude of P, if the radius of curvature at section 
BC is R = 40 mm. 

9.6. Solve Problem 9.5 for the condition that R = 35 mm. 

FIGURE P9.8 

9.9. A curved beam is built up by welding together rectangular 
and elliptical cross section curved beams; the cross section is 
shown in Figure p9.9. The center of curvature is located 20 mm 
from B. The curved beam is subjected to a positive bending 
moment M,. Determine the stresses at points B and C in terms 
of M,. 

15 mm 

, - - . . . . . . , 
15 mm 20 mm I 

FIGURE P9.9 

9.10. A commercial crane hook has the cross-sectional dimen- 
sions shown in Figure p9.10 at the critical section that is sub- 
jected to an axial load P = 100 kN. Determine the circum- 
ferential stresses at the inner and outer radii for this load. 
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31.0 mm 

I 
FIGURE P9.10 

Assume that area A, is half of an ellipse [see row (j) in Table 
9.21 and area A ,  is enclosed by a circular arc. 
9.11. A crane hook has the cross-sectional dimensions shown in 
Figure P9.11 at the critical section that is subjected to an axial 
load P = 90.0 kN. Determine the circumferential stresses at the 
inner and outer radii for this load. Note that A,  and A, are 
enclosed by circular arcs. 

I 
FIGURE P9.12 

9.13. A curved beam with a rectangular cross section strikes a 
90" arc and is loaded and supported as shown in Figure P9.13. 
The thickness of the beam is 50 mm. Determine the hoop stress 
coo along line A-A at the inside and outside radii and at the 
centroid of the beam. 

I 
FIGURE P9.11 k-500 rnm-ttc500 mm+ 

9.12. The curved beam in Figure P9.12 has a triangular cross 
section with the dimensions shown. If P = 40 kN, determine the 
circumferential stresses at B and C. 

P9.13 

Section 9.3 
9.14. Determine the distribution of the radial stress or, in sec- 
tion BC of the beam of Example 9.1. Also determine the maxi- 
mum value of or, and its location. 
9.15. Determine the magnitude of the radial stress or, in section 
BC of Figure P9.12 at a radial distance of 30 mm from point B. 
9.16. For the curved beam in Problem 9.9, determine the radial 
stress in terms of the moment M, if the thickness of the web at 

ou = 320 m a .  

the weld is 10 mm. 
9.17. Figure F'9.17 shows a cast iron frame with a U-shaped 
cross section. The ultimate tensile strength of the cast iron is 

a. Determine the maximum value of P based on a factor of 
safety SF = 4.00, which is based on the ultimate strength. 
b. Neglecting the effect of stress concentrations at the fillet at 
the junction of the web and flange, determine the maximum 
radial stress when this load is applied. 

c. Is the maximum radial stress less than the maximum circum- 
ferential stress? 

is] 300mm 18 
/ 

/ _ - _ _ _ _ -  

FIGURE P9.17 
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Section 9.4 

9.18. A T-section curved beam has the cross section shown in 
Figure P9.18. The center of curvature lies 40 mm from the 
flange. If the curved beam is subjected to a positive bending 
moment M, = 2.50 kN m, determine the stresses at the inner 
and outer radii. Use Bleich’s correction factors. What is the 
maximum shear stress in the curved beam? 

9.24). A load P = 12.0 kN is applied to the clamp shown in Figure 
P9.20. Determine the circumferential stresses at points B and C, 
assuming that the curved beam formula is valid at that section. 

60 mm 

10 mm 

FlGURE P9.18 

FIGURE P9.20 

9.19. Determine the radial stress at the junction of the web and 
the flange for the curved beam in Problem 9.18. Neglect stress 
concentrations. Use the Bleich correction. 

Section 9.5 

9.22. If moment M, and axial force N are applied simulta- 
neously, the strain-energy density resulting from these two 
actions is 

where w is given by Eq. 9.10 and 7,, is found from Eq. 9.3 
with r = R.  Using this expression for strain-energy density, 
derive Eq. 9.3 1. 
9.23. The curved beam in Figure P9.23 is made of a steel (E = 
200 GPa) that has a yield stress Y = 420 MPa. Determine the mag- 
nitude of the bending moment My required to initiate yielding in 
the curved beam, the angle change of the free end, and the horizon- 
tal and vertical components of the deflection of the free end. 
9.24. Determine the deflection of the curved beam in Problem 
9.7 at the point of load application. The curved beam is made of 
an aluminum alloy for which E = 72.0 GPa and G = 27.1 GPa. 
Let k = 1.3. 
9.25. The triangular cross section curved beam in Problem 9.12 
is made of steel (E = 200 GPa and G = 77.5 GPa). Determine 

Section 9.6 

9.27. The ring in Figure P9.27 has an inside diameter of 
100 mm, an outside diameter of 180 mm, and a circular cross 
section. The ring is made of steel having a yield stress of Y = 
520 MPa. Determine the maximum allowable magnitude of P if 
the ring has been designed with a factor of safety SF = 1.75 
against initiation of yielding. 

9.21. Determine the radial stress at the junction of the web and 
inner flange of the curved beam portion of the clamp in Prob- 
lem 9.20. Neglect stress concentrations. 

60 mm 

FIGURE P9.23 

the separation of the points of application of the load. Let 
k =  1.5. 
9.26. Determine the deflection across the center of curvature of 
the cast iron curved beam in Problem 9.17 for P = 126 kN. E = 
102.0 GPa and G = 42.5 GPa. Let k = 1.0 with the area in shear 
equal to the product of the web thickness and the depth. 

9.28. If E = 200 GPa and G = 77.5 GPa for the steel in Problem 
9.27, determine the deflection of the ring for a load P = 60 kN. 
Let k = 1.3. 
9.29. An aluminum alloy ring has a mean diameter of 600 mm 
and a rectangular cross section with 200 mm thickness and a 
depth of 300 mm (radial direction). The ring is loaded by 
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P 9.30. If E = 72.0 GPa and G = 27.1 GPa for the aluminum alloy 
ring in Problem 9.29, determine the separation of the points of 
application of the loads. Let k = 1.5. 

9.31. The link in Figure P9.31 has a circular cross section and is 
made of a steel having a yield stress of Y = 250 m a .  Determine 
the magnitude of P that will initiate yield in the link. 

FIGURE P9.27 

diametrically opposed radial loads P = 4.00 MN. Determine the - _ _  
maximum tensile and compressive circumferential stresses in 
the ring. FIGURE P9.31 

Section 9.7 

9.32. Let the curved beam in Figure 9.10 have a rectangular 
cross section with depth h and width b. Show that the ratio of 
the bending moment M for fully plastic load P ,  to the fully 
plastic moment for pure bending M, = Ybh2/4 is given by the 
relation 

9.33. Let the curved beam in Problem 9.5 be made of a steel 
that has a flat-top stress-strain diagram at the yield stress Y = 
430 MPa. From the answer to Problem 9.5, the load that ini- 
tiates yielding is equal to P ,  = SF(P) = 6.05 kN. Since D = 3h, 
assume M = Mp and calculate P,. Determine the ratio P p / P y .  

I 9.34. Let the steel in the curved beam in Example 9.8 be 
elastic-perfectly plastic with yield stress Y = 280 MPa. Deter- 
mine the fully plastic moment for the curved beam. Note that 
the original cross section must be used. The distortion of the 
cross section increases the fully plastic moment for a positive 
moment. 
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